Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Microbiol Spectr ; 12(1): e0418922, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059630

RESUMO

IMPORTANCE: Despite the increasing prevalence of antibiotic-resistant Escherichia coli strains that cause urinary tract and bloodstream infections, a major pandemic lineage of extraintestinal pathogenic E. coli (ExPEC) ST95 has a comparatively low frequency of drug resistance. We compared the genomes of 1,749 ST95 isolates to identify genetic features that may explain why most strains of ST95 resist becoming drug-resistant. Identification of such genomic features could contribute to the development of novel strategies to prevent the spread of antibiotic-resistant genes and devise new measures to control antibiotic-resistant infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Pandemias , Antibacterianos/farmacologia , Filogenia , Fatores de Virulência/genética
2.
PLoS Med ; 20(10): e1004299, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37831716

RESUMO

BACKGROUND: The spread of antibiotic-resistant bacteria may be driven by human-animal-environment interactions, especially in regions with limited restrictions on antibiotic use, widespread food animal production, and free-roaming domestic animals. In this study, we aimed to identify risk factors related to commercial food animal production, small-scale or "backyard" food animal production, domestic animal ownership, and practices related to animal handling, waste disposal, and antibiotic use in Ecuadorian communities. METHODS AND FINDINGS: We conducted a repeated measures study from 2018 to 2021 in 7 semirural parishes of Quito, Ecuador to identify determinants of third-generation cephalosporin-resistant E. coli (3GCR-EC) and extended-spectrum beta-lactamase E. coli (ESBL-EC) in children. We collected 1,699 fecal samples from 600 children and 1,871 domestic animal fecal samples from 376 of the same households at up to 5 time points per household over the 3-year study period. We used multivariable log-binomial regression models to estimate relative risks (RR) of 3GCR-EC and ESBL-EC carriage, adjusting for child sex and age, caregiver education, household wealth, and recent child antibiotic use. Risk factors for 3GCR-EC included living within 5 km of more than 5 commercial food animal operations (RR: 1.26; 95% confidence interval (CI): 1.10, 1.45; p-value: 0.001), household pig ownership (RR: 1.23; 95% CI: 1.02, 1.48; p-value: 0.030) and child pet contact (RR: 1.23; 95% CI: 1.09, 1.39; p-value: 0.001). Risk factors for ESBL-EC were dog ownership (RR: 1.35; 95% CI: 1.00, 1.83; p-value: 0.053), child pet contact (RR: 1.54; 95% CI: 1.10, 2.16; p-value: 0.012), and placing animal feces on household land/crops (RR: 1.63; 95% CI: 1.09, 2.46; p-value: 0.019). The primary limitations of this study are the use of proxy and self-reported exposure measures and the use of a single beta-lactamase drug (ceftazidime with clavulanic acid) in combination disk diffusion tests for ESBL confirmation, potentially underestimating phenotypic ESBL production among cephalosporin-resistant E. coli isolates. To improve ESBL determination, it is recommended to use 2 combination disk diffusion tests (ceftazidime with clavulanic acid and cefotaxime with clavulanic acid) for ESBL confirmatory testing. Future studies should also characterize transmission pathways by assessing antibiotic resistance in commercial food animals and environmental reservoirs. CONCLUSIONS: In this study, we observed an increase in enteric colonization of antibiotic-resistant bacteria among children with exposures to domestic animals and their waste in the household environment and children living in areas with a higher density of commercial food animal production operations.


Assuntos
Ceftazidima , Escherichia coli , Animais , Criança , Cães , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , beta-Lactamases/metabolismo , Cefalosporinas , Ácido Clavulânico , Equador/epidemiologia , Fatores de Risco , Suínos , Masculino , Feminino
3.
Sci Rep ; 13(1): 14854, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684276

RESUMO

The coronavirus 2019 (COVID-19) pandemic has had significant impacts on health systems, population dynamics, public health awareness, and antibiotic stewardship, which could affect antibiotic resistant bacteria (ARB) emergence and transmission. In this study, we aimed to compare knowledge, attitudes, and practices (KAP) of antibiotic use and ARB carriage in Ecuadorian communities before versus after the COVID-19 pandemic began. We leveraged data collected for a repeated measures observational study of third-generation cephalosporin-resistant E. coli (3GCR-EC) carriage among children in semi-rural communities in Quito, Ecuador between July 2018 and September 2021. We included 241 households that participated in surveys and child stool sample collection in 2019, before the pandemic, and in 2021, after the pandemic began. We estimated adjusted Prevalence Ratios (aPR) and 95% Confidence Intervals (CI) using logistic and Poisson regression models. Child antibiotic use in the last 3 months declined from 17% pre-pandemic to 5% in 2021 (aPR: 0.30; 95% CI 0.15, 0.61) and 3GCR-EC carriage among children declined from 40 to 23% (aPR: 0.48; 95% CI 0.32, 0.73). Multi-drug resistance declined from 86 to 70% (aPR: 0.32; 95% CI 0.13; 0.79), the average number of antibiotic resistance genes (ARGs) per 3GCR-EC isolate declined from 9.9 to 7.8 (aPR of 0.79; 95% CI 0.65, 0.96), and the diversity of ARGs was lower in 2021. In the context of Ecuador, where COVID-19 prevention and control measures were strictly enforced after its major cities experienced some of the world's the highest mortality rates from SARS-CoV-2 infections, antibiotic use and ARB carriage declined in semi-rural communities of Quito from 2019 to 2021.


Assuntos
COVID-19 , Escherichia coli , Criança , Humanos , Equador/epidemiologia , Pandemias , Antagonistas de Receptores de Angiotensina , População Rural , COVID-19/epidemiologia , Inibidores da Enzima Conversora de Angiotensina , SARS-CoV-2/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Microorganisms ; 11(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37630441

RESUMO

The association of tuberculosis and type 2 diabetes mellitus has been a recognized re-emerging challenge in management of the convergence of the two epidemics. Though much of the literature has studied this association, there is less knowledge in the field of genetic diversities that might occur in strains infecting tuberculosis patients with and without diabetes. Our study focused on determining the extent of diversity of genotypes of Mycobacterium tuberculosis in both these categories of patients. We subjected 55 M. tuberculosis isolates from patients diagnosed with pulmonary TB with and without type 2 diabetes mellitus to whole-genome sequencing on Illumina Hi Seq platform. The most common lineage identified was lineage 1, the Indo-Oceanic lineage (n = 22%), followed by lineage 4, the Euro-American lineage (n = 18, 33%); lineage 3, the East-African Indian lineage (n = 13, 24%); and lineage 2, the East-Asian lineage (n = 1, 2%). There were no significant differences in the distribution of lineages in both diabetics and non-diabetics in the South Indian population, and further studies involving computational analysis and comparative transcriptomics are needed to provide deeper insights.

5.
Front Med (Lausanne) ; 10: 1048759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007773

RESUMO

Hansen's disease (HD) is an infectious, treatable, and chronic disease. It is the main cause of infectious peripheral neuropathy. Due to the current limitations of laboratory tests for the diagnosis of HD, early identification of infected contacts is an important factor that would allow us to control the magnitude of this disease in terms of world public health. Thus, a cross-sectional study was conducted in the Brazilian southeast with the objective of evaluating humoral immunity and describing the accuracy of the immunoassay based on IgA, IgM, and IgG antibodies against surface protein Mce1A of Mycobacterium, the predictive potential of these molecules, the clinical significance of positivity, and the ability to segregate new HD cases (NC; n = 200), contacts (HHC; n = 105), and healthy endemic controls (HEC; n = 100) as compared to α-PGL-I serology. α-Mce1A levels for all tested antibodies were significantly higher in NC and HHC than in HEC (p < 0.0001). The performance of the assay using IgA and IgM antibodies was rated as highly accurate (AUC > 0.85) for screening HD patients. Among HD patients (NC), positivity was 77.5% for IgA α-Mce1A ELISA, 76.5% for IgM, and 61.5% for IgG, while α-PGL-I serology showed only 28.0% positivity. Multivariate PLS-DA showed two defined clusters for the HEC and NC groups [accuracy = 0.95 (SD = 0.008)] and the HEC and HHC groups [accuracy = 0.93 (SD = 0.011)]. IgA was the antibody most responsible for clustering HHC as compared to NC and HEC, evidencing its usefulness for host mucosal immunity and as an immunological marker in laboratory tests. IgM is the key antibody for the clustering of NC patients. Positive results with high antibody levels indicate priority for screening, new clinical and laboratory evaluations, and monitoring of contacts, mainly with antibody indexes ≥2.0. In light of recent developments, the incorporation of new diagnostic technologies permits to eliminate the main gaps in the laboratory diagnosis of HD, with the implementation of tools of greater sensitivity and accuracy while maintaining satisfactory specificity.

6.
Front Microbiol ; 14: 1096223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891399

RESUMO

The World Health Organization released a statement warning of increased risk for the incidence of multidrug resistant microorganisms and the absence of new drugs to control such infections soon. Since the beginning of the COVID-19 pandemic, the prescription of antimicrobial agents has increased and may have accelerated the emergence of multidrug resistant (MDR) bacteria. This study aimed to evaluate maternal and pediatric infections within a hospital from January 2019 to December 2021. An observational retrospective cohort study was performed at a quaternary referral hospital in a metropolitan area of Niteroi city, Rio de Janeiro state, Brazil. A total of 196 patients' medical records were analyzed. The data from 90 (45.9%) patients were collected before the SARS-CoV-2 pandemic, 29 (14.8%) from the 2020 pandemic period, and 77 (39.3%) from the 2021 pandemic period. A total of 256 microorganisms were identified during this period. Out of those, 101 (39.5%) were isolated in 2019, 51 (19.9%) in 2020, and 104 (40.6%) in 2021. Antimicrobial susceptibility tests were performed on 196 (76.6%) clinical isolates. The exact binomial test showed that the distribution of Gram-negative bacteria was predominant. The most common microorganism was Escherichia coli (23%; n = 45), followed by Staphylococcus aureus (17.9%, n = 35), Klebsiella pneumoniae (12.8%, n = 25), Enterococcus faecalis (7.7%, n = 15), Staphylococcus epidermidis (6.6%, n = 13) and Pseudomonas aeruginosa (5.6%, n = 11). Staphylococcus aureus was the predominant species among resistant bacteria. Among the antimicrobial agents tested, the following were resistant, presented on a descending scale: penicillin (72.7%, p = 0.001, Binomial test), oxacillin (68.3%, p = 0.006, Binomial test), ampicillin (64.3%, p = 0.003, Binomial test), and ampicillin/sulbactam (54.9%, p = 0.57, Binomial test). Infections with S. aureus were 3.1 times greater in pediatrics and maternal units than in other hospital wards. Despite the global reduction in the incidence of MRSA, we observed an increase in MDR S. aureus in this study. No changes were observed in the frequency of resistance profiles of the clinical isolates after the establishment of the global SARS-CoV-2 pandemic. More comprehensive studies are needed to understand the impact of the global SARS-CoV-2 pandemic on the resistance levels of bacteria associated with neonate and pediatric patients.

7.
Clin Infect Dis ; 76(7): 1209-1217, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36401872

RESUMO

BACKGROUND: Streptococcus pneumoniae interacts with numerous viral respiratory pathogens in the upper airway. It is unclear whether similar interactions occur with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We collected saliva specimens from working-age adults undergoing SARS-CoV-2 molecular testing at outpatient clinics and via mobile community-outreach testing between July and November 2020 in Monterey County, California. After bacterial culture enrichment, we tested for pneumococci by means of quantitative polymerase chain reaction targeting the lytA and piaB genes, and we measured associations with SARS-CoV-2 infection using conditional logistic regression. RESULTS: Analyses included 1278 participants, with 564 enrolled in clinics and 714 enrolled through outreach-based testing. The prevalence of pneumococcal carriage was 9.2% (117 of 1278) among all participants (11.2% [63 of 564] in clinic-based testing and 7.6% [54 of 714] in outreach-based testing). The prevalence of SARS-CoV-2 infection was 27.4% (32 of 117) among pneumococcal carriers and 9.6% (112 of 1161) among noncarriers (adjusted odds ratio [aOR], 2.73 [95% confidence interval (CI): 1.58-4.69). Associations between SARS-CoV-2 infection and pneumococcal carriage were enhanced in the clinic-based sample (aOR, 4.01 [95% CI: 2.08-7.75]) and among symptomatic participants (3.38 [1.35-8.40]), compared with findings within the outreach-based sample and among asymptomatic participants. The adjusted odds of SARS-CoV-2 coinfection increased 1.24-fold (95% CI: 1.00-1.55-fold) for each 1-unit decrease in piaB quantitative polymerase chain reaction cycle threshold value among pneumococcal carriers. Finally, pneumococcal carriage modified the association of SARS-CoV-2 infection with recent exposure to a suspected coronavirus disease 2019 case (aOR, 7.64 [95% CI: 1.91-30.7] and 3.29 [1.94-5.59]) among pneumococcal carriers and noncarriers, respectively). CONCLUSIONS: Associations of pneumococcal carriage detection and density with SARS-CoV-2 suggest a synergistic relationship in the upper airway. Longitudinal studies are needed to determine interaction mechanisms between pneumococci and SARS-CoV-2.


Assuntos
COVID-19 , Infecções Pneumocócicas , Humanos , Adulto , Streptococcus pneumoniae/genética , COVID-19/epidemiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Nasofaringe/microbiologia , SARS-CoV-2
8.
Antibiotics (Basel) ; 11(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36358232

RESUMO

Exacerbation due to antimicrobial-drug-resistant bacteria among chronic obstructive pulmonary disease (AECOPD) patients contributes to mortality and morbidity. We examined the prevalence of the bacterial organisms and trends in drug resistance in AECOPD. In this retrospective study, between January 2016 to December 2020, among 3027 AECOPD patients, 432 (14.3%) had bacteria isolated. The regression and generalized estimating equations (GEE) were used for trends in the resistance patterns over five years, adjusting for age, gender, and comorbidities. Klebsiella pneumoniae (32.4%), Pseudomonas aeruginosa (17.8%), Acinetobacter baumannii (14.4%), Escherichia coli (10.4%), and Staphylococcus aureus (2.5%) were common. We observed high levels of drug resistance in AECOPD patients admitted to ICU (87.8%) and non-ICU (86.5%). A Cox proportional hazard analysis, observed infection with Acinetobacter baumannii and female sex as independent predictors of mortality. Acinetobacter baumannii had 2.64 (95% confidence interval (CI): 1.08−6.43) higher odds of death, compared to Klebsiella pneumoniae. Females had 2.89 (95% CI: 1.47−5.70) higher odds of death, compared to males. A high proportion of bacterial AECOPD was due to drug-resistant bacteria. An increasing trend in drug resistance was observed among females.

9.
Am J Trop Med Hyg ; 107(6): 1281-1287, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36375455

RESUMO

We assessed the effectiveness of food vouchers as a social protection strategy to enhance the adherence to tuberculosis treatment in health-care facilities in Brazil between 2014 and 2017. A cluster-randomized controlled trial was performed in four Brazilian capital cities. A total of 774 adults with newly diagnosed pulmonary tuberculosis were included in this study. Eligible participants initiated standard tuberculosis treatment per National Tuberculosis Program guidelines. Health clinics were assigned randomly to intervention groups (food voucher or standard treatment). The food voucher was provided by researchers, which could be used by subjects only for buying food. Most people with tuberculosis were poor, did receive benefits of the Bolsa Familia Program, and were unemployed. By Poisson regression analysis, with the total number of subjects included in the study, we found that individuals with tuberculosis who received food vouchers had a 1.13 greater risk of cure (95% CI, 1.03-1.21) compared with those who did not receive food vouchers. The provision of food vouchers improved outcomes of tuberculosis treatment and it should be enhanced even further as social protection for people with tuberculosis.


Assuntos
Tuberculose Pulmonar , Tuberculose , Adulto , Humanos , Brasil/epidemiologia , Tuberculose/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/diagnóstico , Alimentos , Abastecimento de Alimentos
10.
mSphere ; 7(6): e0047122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377882

RESUMO

Antimicrobial resistance in urinary tract infections (UTIs) is a major public health concern. This study aims to characterize the phenotypic and genetic basis of multidrug resistance (MDR) among expanded-spectrum cephalosporin-resistant (ESCR) uropathogenic Escherichia coli (UPEC) causing UTIs in California patient populations. Between February and October 2019, 577 ESCR UPEC isolates were collected from patients at 6 clinical laboratory sites across California. Lineage and antibiotic resistance genes were determined by analysis of whole-genome sequence data. The lineages ST131, ST1193, ST648, and ST69 were predominant, representing 46%, 5.5%, 4.5%, and 4.5% of the collection, respectively. Overall, 527 (91%) isolates had an expanded-spectrum ß-lactamase (ESBL) phenotype, with blaCTX-M-15, blaCTX-M-27, blaCTX-M-55, and blaCTX-M-14 being the most prevalent ESBL genes. In the 50 non-ESBL phenotype isolates, 40 (62%) contained blaCMY-2, which was the predominant plasmid-mediated AmpC (pAmpC) gene. Narrow-spectrum ß-lactamases, blaTEM-1B and blaOXA-1, were also found in 44.9% and 32.1% of isolates, respectively. Among ESCR UPEC isolates, isolates with an ESBL phenotype had a 1.7-times-greater likelihood of being MDR than non-ESBL phenotype isolates (P < 0.001). The cooccurrence of blaCTX-M-15, blaOXA-1, and aac(6')-Ib-cr within ESCR UPEC isolates was strongly correlated. Cooccurrence of blaCTX-M-15, blaOXA-1, and aac(6')-Ib-cr was associated with an increased risk of nonsusceptibility to piperacillin-tazobactam, cefepime, fluoroquinolones, and amikacin as well as MDR. Multivariate regression revealed the presence of blaCTX-M-55, blaTEM-1B, and the ST131 genotype as predictors of MDR. IMPORTANCE The rising incidence of resistance to expanded-spectrum cephalosporins among Escherichia coli strains, the most common cause of UTIs, is threatening our ability to successfully empirically treat these infections. ESCR E. coli strains are often MDR; therefore, UTI caused by these organisms often leads to treatment failure, increased length of hospital stay, and severe complications (D. G. Mark, Y.-Y. Hung, Z. Salim, N. J. Tarlton, et al., Ann Emerg Med 78:357-369, 2021, https://doi.org/10.1016/j.annemergmed.2021.01.003). Here, we performed an in-depth analysis of genetic factors of ESCR E. coli associated with coresistance and MDR. Such knowledge is critical to advance UTI diagnosis, treatment, and antibiotic stewardship.


Assuntos
Infecções por Escherichia coli , Escherichia coli Uropatogênica , Humanos , Cefalosporinas/farmacologia , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/epidemiologia , beta-Lactamases/genética , Fenótipo , Monobactamas , Farmacorresistência Bacteriana Múltipla/genética
11.
medRxiv ; 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36238718

RESUMO

Background: Streptococcus pneumoniae interacts with numerous viral respiratory pathogens in the upper airway. It is unclear whether similar interactions occur with SARS-CoV-2. Methods: We collected saliva specimens from working-age adults receiving SARS-CoV-2 molecular testing at outpatient clinics and via mobile community-outreach testing between July and November 2020 in Monterey County, California. Following bacterial culture enrichment, we tested for pneumococci by quantitative polymerase chain reaction (qPCR) targeting the lytA and piaB genes, and measured associations with SARS-CoV-2 infection via conditional logistic regression. Results: Analyses included 1,278 participants, with 564 enrolled in clinics and 714 enrolled through outreach-based testing. Prevalence of pneumococcal carriage was 9.2% (117/1,278) among all participants (11.2% [63/564] clinic-based testing; 7.6% [54/714] outreach testing). Prevalence of SARS-CoV-2 infection was 27.4% (32/117) among pneumococcal carriers and 9.6% (112/1,161) among non-carriers (adjusted odds ratio [aOR]: 2.73; 95% confidence interval: 1.58-4.69). Associations between SARS-CoV-2 infection and pneumococcal carriage were enhanced in the clinic-based sample (aOR=4.01 [2.08-7.75]) and among symptomatic participants (aOR=3.38 [1.35-8.40]), when compared to findings within the outreach-based sample and among asymptomatic participants. Adjusted odds of SARS-CoV-2 co-infection increased 1.24 (1.00-1.55)-fold for each 1-unit decrease in piaB qPCR C T value among pneumococcal carriers. Last, pneumococcal carriage modified the association of SARS-CoV-2 infection with recent exposure to a suspected COVID-19 case (aOR=7.64 [1.91-30.7] and 3.29 [1.94-5.59]) among pneumococcal carriers and non-carriers, respectively). Conclusions: Associations of pneumococcal carriage detection and density with SARS-CoV-2 suggest a synergistic relationship in the upper airway. Longitudinal studies are needed to determine interaction mechanisms between pneumococci and SARS-CoV-2. Key points: In an adult ambulatory and community sample, SARS-CoV-2 infection was more prevalent among pneumococcal carriers than non-carriers.Associations between pneumococcal carriage and SARS-CoV-2 infection were strongest among adults reporting acute symptoms and receiving SARS-CoV-2 testing in a clinical setting.

12.
PLoS One ; 17(9): e0274423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36107878

RESUMO

Urinary tract infection (UTI) accounts for a significant morbidity and mortality across the world and is a leading cause for antibiotic prescriptions in the community especially in developing countries. Empirical choice of antibiotics for treatment of UTI is often discordant with the drug susceptibility of the etiologic agent. This study aimed to estimate the prevalence of community-acquired UTI caused by antibiotic resistant organisms. This was a cross-sectional study where urine samples were prospectively collected from 4,500 patients at the icddr,b diagnostic clinic in Dhaka, Bangladesh during 2016-2018. Urine samples were analyzed by standard culture method and the isolated bacteria were tested for antibiotic susceptibility by using disc diffusion method and VITEK-2. Descriptive statistics were used to estimate the prevalence of community acquired UTI (CA-UTI) by different age groups, sex, and etiology of infection. Relationship between the etiology of CA-UTI and age and sex of patients was analyzed using binary logistic regression analysis. Seasonal trends in the prevalence of CA-UTI, multi-drug resistant (MDR) pathogens and MDR Escherichia coli were also analyzed. Around 81% of patients were adults (≥18y). Of 3,200 (71%) urine samples with bacterial growth, 920 (29%) had a bacterial count of ≥1.0x105 CFU/ml indicating UTI. Women were more likely to have UTI compared to males (OR: 1.48, CI: 1.24-1.76). E. coli (51.6%) was the predominant causative pathogen followed by Streptococcus spp. (15.7%), Klebsiella spp. (12.1%), Enterococcus spp. (6.4%), Pseudomonas spp. (4.4%), coagulase-negative Staphylococcus spp. (2.0%), and other pathogens (7.8%). Both E. coli and Klebsiella spp. were predominantly resistant to penicillin (85%, 95%, respectively) followed by macrolide (70%, 76%), third-generation cephalosporins (69%, 58%), fluoroquinolones (69%, 53%) and carbapenem (5%, 9%). Around 65% of patients tested positive for multi-drug resistant (MDR) uropathogens. A higher number of male patients tested positive for MDR pathogens compared to the female patients (p = 0.015). Overall, 71% of Gram-negative and 46% of Gram-positive bacteria were MDR. The burden of community-acquired UTI caused by MDR organisms was high among the study population. The findings of the study will guide clinicians to be more selective about their antibiotic choice for empirical treatment of UTI and alleviate misuse/overuse of antibiotics in the community.


Assuntos
Infecções Comunitárias Adquiridas , Infecções Urinárias , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bangladesh/epidemiologia , Carbapenêmicos/uso terapêutico , Cefalosporinas/uso terapêutico , Coagulase , Infecções Comunitárias Adquiridas/complicações , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/epidemiologia , Estudos Transversais , Resistência Microbiana a Medicamentos , Enterococcus , Escherichia coli , Feminino , Fluoroquinolonas/uso terapêutico , Humanos , Klebsiella , Macrolídeos/uso terapêutico , Masculino , Penicilinas/uso terapêutico , Prevalência , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/etiologia
13.
Front Med (Lausanne) ; 9: 855787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755036

RESUMO

Hansen's disease (HD) is an ancient disease, but more than 200,000 new cases were reported worldwide in 2019. Currently, there are not many satisfactory immunoassay methods for its diagnosis. We evaluated antibodies against Mce1A as a promising new serological biomarker. We collected plasma from new cases, contacts, and endemic controls in the city of Parnaíba and treated patients at Carpina, a former HD colony in Piauí state, northeastern Brazil. Receiver operating characteristic (ROC) curves were used to assess the assay thresholds, specificity and sensitivity of the IgA, IgM, and IgG antibodies against α-Mce1A by indirect ELISA and compared it with IgM anti-PGL-I and molecular diagnosis by quantitative polymerase chain reaction (qPCR). Venn diagrams were generated to represent the overlap in the antibody positivity pattern. Multivariate analysis was performed to assess the potential predictor of antibodies for the outcome of having an HD diagnosis. IgA and IgG were positive in 92.3 and 84% of patients, respectively. IgM was negative for all treated patients. IgG had a sensitivity and specificity of 94.7 and 100%, respectively. IgM-positive individuals had a 3.6 chance of being diagnosed with HD [OR = 3.6 (95% CI = 1.1-11.6); p = 0.028], while IgA-positive individuals had a 2.3 chance [OR = 2.3 (95% CI = 1.2-4.3); p = 0.005] compared to endemic controls. We found that the Mce1A antibody profile can be an excellent diagnostic method of HD. IgA is an ideal biomarker for confirming contact with the bacillus. IgM has potential in the detection of active disease. IgG antibodies confirm the performance of these serological markers in diagnosis and therapeutic follow-up.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35409839

RESUMO

The elimination of HCV (hepatitis C virus) infection is, according to WHO (World Health Organization), of international interest. With new diagnostic tools and treatment possibilities, one major challenge for the elimination is to involve infected patients, especially those from socially excluded subpopulations, into HCV infection-treatment programs. The key question is how to help people who inject drugs (PWID) to engage in HCV infection-treatment programs and improve communication between PWID and hepatologists or other medical professionals involved in the treatment of chronic HCV infection. Furthermore, the medical professionals have to accept the changing spectrum of patients with chronic viral hepatitis. Without close interdisciplinary cooperation, it would be extremely difficult to achieve the WHO goal of global viral hepatitis C elimination. Here, we try to encourage our colleagues as well as addictologists and social workers to play their crucial part in the viral hepatitis C eradication process. It is extremely important for the healthcare providers to be able to communicate with addicted clients, inform PWID about the latest developments in the diagnosis and HCV infection treatment, and get them motivated to engage with specialized treatment programs.


Assuntos
Hepatite C , Abuso de Substâncias por Via Intravenosa , Antivirais/uso terapêutico , Hepacivirus , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Hepatite C/prevenção & controle , Humanos , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/tratamento farmacológico , Abuso de Substâncias por Via Intravenosa/epidemiologia , Organização Mundial da Saúde
15.
IUCrJ ; 8(Pt 5): 757-774, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584737

RESUMO

Mycobacterium tuberculosis (Mtb), which is responsible for more than a million deaths annually, uses lipids as the source of carbon and energy for its survival in the latent phase of infection. Mtb cannot synthesize all of the lipid molecules required for its growth and pathogenicity. Therefore, it relies on transporters such as the mammalian cell entry (Mce) complexes to import lipids from the host across the cell wall. Despite their importance for the survival and pathogenicity of Mtb, information on the structural properties of these proteins is not yet available. Each of the four Mce complexes in Mtb (Mce1-4) comprises six substrate-binding proteins (SBPs; MceA-F), each of which contains four conserved domains (N-terminal transmembrane, MCE, helical and C-terminal unstructured tail domains). Here, the properties of the various domains of Mtb Mce1A and Mce4A, which are involved in the import of mycolic/fatty acids and cholesterol, respectively, are reported. In the crystal structure of the MCE domain of Mce4A (MtMce4A39-140) a domain-swapped conformation is observed, whereas solution studies, including small-angle X-ray scattering (SAXS), indicate that all Mce1A and Mce4A domains are predominantly monomeric. Further, structural comparisons show interesting differences from the bacterial homologs MlaD, PqiB and LetB, which form homohexamers when assembled as functional transporter complexes. These data, and the fact that there are six SBPs in each Mtb mce operon, suggest that the MceA-F SBPs from Mce1-4 may form heterohexamers. Also, interestingly, the purification and SAXS analysis showed that the helical domains interact with the detergent micelle, suggesting that when assembled the helical domains of MceA-F may form a hydrophobic pore for lipid transport, as observed in EcPqiB. Overall, these data highlight the unique structural properties of the Mtb Mce SBPs.

16.
J Glob Antimicrob Resist ; 26: 166-173, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051401

RESUMO

OBJECTIVES: Bacterial antimicrobial resistance is a serious global public-health threat. Intestinal commensal drug-resistant bacteria have been suggested as an important reservoir of antimicrobial resistance genes (ARGs), which may be acquired via food. We aimed to identify risk factors associated with faecal carriage of drug-resistant commensal Escherichia coli among healthy adults focused on their dietary habits. METHODS: We conducted a cross-sectional study targeting healthy adult volunteers in a college community. Faecal samples and questionnaires were obtained from 113 volunteers. We conducted backward elimination logistic regression and least absolute shrinkage and selection operator (LASSO) methods to identify risk factors. RESULTS: We analysed responses from 81 of 113 volunteers who completed the questionnaire. The logistic regression and LASSO methods identified red meat consumption to be associated with an increased risk [OR = 6.13 (95% CI 1.83-24.2) and 1.82, respectively] and fish consumption with a reduced risk [OR = 0.27 (95% CI 0.08-0.85) and 0.81] for carriage of multidrug-resistant (MDR) E. coli, adjusted for biological sex, employment status, frequently used supermarket and previous travel. CONCLUSION: Dietary habits are associated with risk of faecal carriage of MDR E. coli. This study supports the growing evidence that food may be an important source of ARGs present in human commensal E. coli.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Adulto , Animais , Estudos Transversais , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Humanos , Prevalência , Fatores de Risco
18.
J Microbiol Methods ; 182: 106160, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33548393

RESUMO

The increasing prevalence of extended spectrum ß-lactamases (ESBLs) and plasmid-mediated AmpC (pAmpC) ß-lactamases among Enterobacterales threatens our ability to treat urinary tract infections (UTIs). These organisms are resistant to most ß-lactam antibiotics and are frequently multidrug-resistant (MDR). Consequently, they are often resistant to antibiotics used to empirically treat UTIs. The lack of rapid diagnostic and antibiotic susceptibility tests (AST) makes clinical management of UTIs caused by such organisms difficult, as standard culture and susceptibility assays require several days. We have adapted a biochemical detection assay, termed dual-enzyme trigger-enabled cascade technology (DETECT) for rapid detection of resistance (time-to-result of 3 h) to other antibiotics commonly used in treatment of UTIs. DETECT is activated by the presence of CTX-M and pAmpC ß-lactamases. In this proof-of-concept study, the adapted DETECT assay (AST-DETECT) has been performed on pure-cultures of Klebsiella pneumoniae and Escherichia coli (48 isolates) expressing ESBL or pAmpC ß-lactamases to perform AST for ciprofloxacin (sensitivity 96.9%, specificity 100%, accuracy 97.9%) nitrofurantoin (sensitivity 95.7%, specificity 91.7%, accuracy 94%) and trimethoprim/sulfamethoxazole (sensitivity 83.3%, specificity 100%, accuracy 89.4%). These results suggest that AST-DETECT may be adapted as a potential diagnostic platform to rapidly detect multidrug-resistant E. coli and K. pneumoniae that cause UTI.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Escherichia coli , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Infecções Urinárias/microbiologia , Proteínas de Bactérias/metabolismo , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Humanos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Estudo de Prova de Conceito , beta-Lactamases/metabolismo
19.
J Viral Hepat ; 28(5): 694-698, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33550694

RESUMO

Under the WHO plan, the global elimination of the HCV pandemic is scheduled for 2030. The burden of HCV infection in developed countries is largely borne by people who inject drugs (PWID): new infections and reinfections are related to their risky behaviour. Although safe and sensitive hepatitis C diagnostic tools and directly acting antiviral medication are widely used, major challenges to disease elimination still remain in developed countries, where the WHO plan is in progress. The challenge is in the involvement and engagement of infected PWID. There is a strong need to change our uptake and treatment strategies to address all patients from the risk groups, connect them with the healthcare system and cure them with the vision to eliminate this HCV pandemic.


Assuntos
Hepatite C , Abuso de Substâncias por Via Intravenosa , Antivirais/uso terapêutico , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C/epidemiologia , Hepatite C/prevenção & controle , Humanos , Pandemias/prevenção & controle , Abuso de Substâncias por Via Intravenosa/epidemiologia
20.
Microb Drug Resist ; 27(4): 450-461, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32830997

RESUMO

Extended-spectrum ß-lactamase (ESBL)-producing Gram-negative bacteria (GNB) are increasingly identified as the cause of both community and healthcare-associated urinary tract infections (UTIs), with CTX-Ms being the most common ESBLs identified. CTX-M-producing GNB are resistant to most ß-lactam antibiotics and are frequently multidrug-resistant, which limits treatment options. Rapid diagnostic tests that can detect ESBL-producing GNB, particularly CTX-M producers, in the urine of patients with UTIs are needed. Results from such a test could direct the selection of appropriate antimicrobial therapy at the point-of-care (POC). In this study, we show that a chromogenic, dual enzyme-mediated amplification system (termed DETECT [dual-enzyme trigger-enabled cascade technology]) can identify CTX-M-producing GNB from unprocessed urine samples in 30 minutes. We first tested DETECT against a diverse set of recombinant ß-lactamases and ß-lactamase-producing clinical isolates to elucidate its selectivity. We then tested DETECT with 472 prospectively collected clinical urine samples submitted for urine culture to a hospital clinical microbiology laboratory. Of these, 118 (25%) were consistent with UTI, 13 (11%) of which contained ESBL-producing GNB. We compared DETECT results in urine against a standard phenotypic method to detect ESBLs, and polymerase chain reaction and sequencing for CTX-M genes. DETECT demonstrated 90.9% sensitivity and 97.6% specificity (AUC, 0.937; 95% confidence interval, 0.822-1.000), correctly identifying 10 of 11 urine samples containing a clinically significant concentration of CTX-M-producing GNB (including Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis). Our results demonstrate the clinical potential of DETECT to deliver diagnostic information at the POC, which could improve initial antibiotic selection.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Sistemas Automatizados de Assistência Junto ao Leito , Infecções Urinárias/microbiologia , Resistência beta-Lactâmica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Urina/microbiologia , beta-Lactamases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...